
International Journal of Information Technology and Knowledge Management
January-June 2011, Volume 4, No. 1, pp. 21-25

OVERALL PERFORMANCE IMPROVEMENT IN WIRELESS SENSOR
NETWORK SYSTEM USING END-END ARGUMENTS

Preeti Khera1, Ashok Kumar2 & Vibhuti PN Jaiswal3

This argument appeals to application requirements, and provides a rationale for moving function upward in a layered system,
closer to the application that uses that function. However, low level mechanisms to support these functions are justified only
as performance enhancements. This paper reviews the end-to-end arguments, discusses additional arguments for and against
end-to-end implementations and provides an algorithm for transfer of packets together with the discussion of some examples
like delivery guarantees, security, duplicate message suppression and queuing.

Keywords: End-to-End Arguments, Performance Parameters, Sensor Networks, Simulation, Transmission

1. INTRODUCTION

The concept of end-to-end was mentioned briefly, in the
course of the consultations on the establishment of a
Working Group on Internet Governance (WGIG) held at
Geneva from 20-21 September 2004 [1]. It was advisable
to add the following words: “or integrated with”, after the
phrase “high level services layered on”. Since the layering
approach has many advantages and should be retained along
with more integrated system architectures. The paper “End-
to-end arguments in system design” [14] (henceforth called
“The Paper”) has had a profound impact since it was
published in 1984. At the same time, the recent success of
peer-to-peer networking exemplifies the benefits of end-to-
end implementations. The authors of the Paper have
themselves revisited the original principle in a modern
context, evaluating active networking in terms of end-to-
end arguments [9], one author (Reed) has written on how
end-to-end arguments remain pertinent today [5], and
another (Clark) has written about their role in the context
of the changing requirements of the Internet [4]. This paper
first describes the primary end-to-end argument and the
“careful file transfer” case study, as presented in the Paper.
It then considers the performance implications of end- to-
end implementations, and describes additional end-to-end
arguments such as correct delivery guarantees, secure data
transmission, Duplicate message suppression and
Guaranteeing FIFO message delivery.

Finally, it considers how to transfer the packets between
end users. So, in this paper, system model has been
introduced which purposes an overall improvement in the
performance of wireless sensor networks using end to end
arguments.
1 2, 3Department of Electronics and Communication Engineering,

ACE, Devasthali, Ambala, India

Email: 1kherapreeti33@gmail.com, 2ashokcalicut1993@gmail.com,
3vibhuti.jaiswal85@gmail.com

2. END-TO-END ARGUMENTS PARAMETERS

The principle, called the end-to-end argument, suggests that
functions placed at low levels of a system may be redundant
or of little value when compared with the cost of providing
them at that low level. The function in question can
completely and correctly be implemented only with the
knowledge and help of the application standing at the end
points of the communication systems [14]. But the question
arises where to implement these functions either at both end
or within the network. Though, certain functions such as
routing, security, error control etc are implemented in both
end systems and the network. While the paper presents
multiple end-to-end arguments but it emphasis on basic
algorithm highligtening important steps for delivery of
“careful File Transfer” [13] and “providing efficient &
reliable communication in wireless sensor networks”- a
challenging problem [2]. The data communication system,
range includes encryption, duplicate message detection and
suppression, message sequencing, guaranteed message
delivery, detecting host crashes, and delivery receipts. In a
broader context the argument seems to apply to many other
functions of a computer operating system, including its file
system [14].

3. CAREFUL FILE TRANSFER

Consider the problem of “careful file transfer.” A file is
stored by a file system, in the disk storage of computer A.
Computer A is linked by a data communication network
with computer B, which also has a file system and a disk
store. The object is to move the file from computer A’s
storage to computer B’s storage without damage, in the face
of knowledge that failures can occur at various points along
the way. The application program in this case is the file
transfer program, part of which runs at host A and part at
host B. In order to discuss the possible threats to the file’s
integrity in this transaction, let us assume that the following
specific steps are involved [14].

mailto:1kherapreeti33@gmail.com
mailto:2ashokcalicut1993@gmail.com
mailto:jaiswal85@gmail.com2.END-TO-END


22 PREETI KHERA, ASHOK KUMAR & VIBHUTI PN JAISWAL

1. At host A the file transfer program calls upon the
file system to read the file from the disk, where it
resides on several tracks, and the file system passes
it to the file transfer program in fixed-size blocks
chosen to be disk-format independent.

2. Also at host A the file transfer program asks the
data communication system to transmit the file
using some communication protocol that involves
splitting the data into packets. The packet size is
typically different from the file block size and the
disk track size.

3. The data communication network moves the
packets from computer A to computer B.

4. At host B a data communication program removes
the packets from the data communication protocol
and hands the contained data on to a second part
of the file transfer application, the part that operates
within host B.

5. At host B, the file transfer program asks the file
system to write the received data on the disk of
host B.

With this model of the steps involved, the following
are some of the threats to the transaction that a careful
designer might be concerned about [14]:

1. The file, though originally written correctly onto
the disk at host A, if read now may contain incorrect
data, perhaps because of hardware faults in the disk
storage system.

2. The software of the file system, the file transfer
program, or the data communication system might
make a mistake in buffering and copying the data
of the file, either at host A or host B.

3. The hardware processor or its local memory might
have a transient error while doing the buffering and
copying, either at host A or host B.

4. The communication system might drop or change
the bits in a packet, or lose a packet or deliver a
packet more than once.

5. Either of the hosts may crash part way through the
transaction after performing an unknown amount
(perhaps all) of the transaction.

The file may become corrupted at various points on
the end-to-end path, e.g. on the communication channel (1),
in intermediaries such as the router (2), or during disk access
(3). For examples of the causes of errors, for discussion of
link error control text such as Lin and Costello [15], and to
Stone and Partridge [11] for a discussion of router and end-
system errors. The authors argue that only a check made at
the endpoints (i.e. from information stored on the disks)

can “completely and correctly” ensure that no error has been
introduced

Fig. 1: Errors can Occur at Different Points (1, 2, and 3) on
the End-to-end Path [13]

How would a careful file transfer application then cope
with this list of threats? One approach might be to reinforce
each of the steps along the way using duplicate copies,
timeout and retry, carefully located redundancy for error
detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an
acceptably small value. The alternate approach might be
called “end-to-end check and retry”. Suppose that as an aid
to coping with threat number one, stored with each file is a
checksum that has sufficient redundancy to reduce the
chance of an undetected error in the file to an acceptably
negligible value [14].

4. PERFORMANCE

The simple strategy outlined above, transmitting the file and
then checking to see that the file arrived correctly, would
perform more poorly as the length of the file increases. The
probability that all packets of a file arrive correctly decreases
exponentially with the file length, and thus the expected time
to transmit the file grows exponentially with file length.
Clearly, some effort at the lower levels to improve network
reliability can have a significant effect on application
performance. But the key idea here is that the lower levels
need not provide “perfect” reliability. The “proper” tradeoff
requires careful thought; for example one might start by
designing the communication system to provide just the
reliability that comes with little cost and engineering effort,
and then evaluate the residual error level to insure that it is
consistent with an acceptable retry frequency at the file
transfer level. Performing a function at a low level may be
more efficient, if the function can be performed with a
minimum perturbation of the machinery already included
in the low-level subsystem, but just the opposite situation
can occur – that is, performing the function at the lower
level may cost more for two reasons [14]. First, since the
lower level subsystem is common to many applications,
those applications that do not need the function will pay for



OVERALL PERFORMANCE IMPROVEMENT IN WIRELESS SENSOR NETWORK SYSTEM USING END-END ARGUMENTS 23

it anyway. Second, the low-level subsystem may not have
as much information as the higher levels, so it cannot do
the job as efficiently. The end-to-end argument does not tell
us where to put the early checks, since either layer can do
this performance-enhancement job.

Placing the early retry protocol in the file transfer
application simplifies the communication system, but may
increase overall cost, since the communication system is
shared by other applications and each application must now
provide its own reliability enhancement. Placing the early
retry protocol in the communication system may be more
efficient, since it may be performed inside the network on a
hop-by-hop basis, reducing the delay involved in correcting
a failure. The principle performance benefit of end-to-end
implemen-tations is that such implementations tend to
reduce the amount of processing required in the network,
allowing the network to operate at higher speed when
processing is the bottleneck (as is currently common with
optical transmission technology). Second performance
benefits of simple networks (which follow end-to-end
arguments) are that they are easier to design and change,
and this short design turnaround time allows them to track
improvements in implementation technologies. Finally, end-
to-end functions need only be encountered once (at the
endpoints), whereas localized functions may be encountered
multiple times, e.g. once for each hop that the traffic takes
through the network. This repeated processing can also
degrade performance.

A. Correct Delivery Guarantees

Data communication network can easily return an
acknowledgement to the sender for every message delivered
to a recipient. Although this acknowledgement may be useful
within the network as a form of congestion control
(originally the ARPANET [14] refused to accept another
message to the same target until the previous RFNM had
returned) it was never found to be very helpful to
applications using the ARPANET. Another strategy for
obtaining immediate acknowledgements is to make the target
host sophisticated enough that when it accepts delivery of a
message it also accepts responsibility for guaranteeing that
the message is acted upon by the target application. This
approach can eliminate the need for an end-to-end
acknowledgement in some, but not all applications. An end-
to-end acknowledgement is still required for applications
in which the action requested of the target host should be
done only if similar actions requested of other hosts are
successful. This kind of application requires a two-phase
commit protocol [5,10,15] which is a sophisticated end-to-
end acknowledgement. According to the end-to-end
arguments, applications, not transport layers, should check
integrity [13].

B. Secure Data Transmission

Another area in which an end-to-end argument can be
applied is that of data encryption. The argument here is
threefold [14]. First, if the data transmission system performs
encryption and decryption, it must be trusted to manage
securely the required encryption keys. Second, the data will
be in the clear and thus vulnerable as it passes into the target
node and is fanned out to the target application. Third, the
authenticity of the message must still be checked by the
application. This network-level encryption can be quite
unsophisticated – the same key can be used by all hosts,
with frequent changes of the key. No per-user keys
complicate the key management problem. The use of
encryption for application level authentication and
protection is complementary. Neither mechanism can satisfy
both requirements completely.

C. Duplicate Message Suppression

A more sophisticated argument can be applied to duplicate
message suppression. A property of some communication
network designs is that a message or a part of a message
may be delivered twice, typically as a result of time-out-
triggered failure detection and retry mechanisms [14]
operating within the network. The network can provide the
function of watching for and suppressing any such duplicate
messages or it can simply deliver them. One might expect
that an application would find it very troublesome to cope
with a network that may deliver the same message twice;
indeed it is troublesome. Unfortunately, even if the network
suppresses duplicates, the application itself may accidentally
originate duplicate requests, in its own failure/retry
procedures. These application level duplications look like
different messages to the communication system, so it cannot
suppress them; suppression must be accomplished by the
application itself with knowledge of how to detect its own
duplicates. If the application level has to have a duplicate-
suppressing mechanism anyway, that mechanism can also
suppress any duplicates generated inside the communication
network, so the function can be omitted from that lower
level. The same basic reasoning applies to completely
omitted messages as well as to duplicated ones. Accessing
data at a repository is done by sending it a message
specifying the object to be accessed, the version, and type
of access (read/write), plus a value to be written if the access
is a write. The underlying message communication system
does not suppress duplicate messages, since a) the object
identifier plus the version information suffices to detect
duplicate writes, and b) the effect of a duplicate read request
message is only to generate a duplicate response, which is
easily discarded by the originator. Consequently, the low-
level message communication protocol is significantly
simplified.



24 PREETI KHERA, ASHOK KUMAR & VIBHUTI PN JAISWAL

D. Guaranteeing FIFO Message Delivery

Ensuring that messages arrive at the receiver in the same
order they are sent is another function usually assigned to
the communication subsystem. The mechanism usually used
to achieve such first-in, first-out (FIFO) behavior guarantees
FIFO ordering among messages sent on the same virtual
circuit. Messages sent along independent virtual circuits,
or through intermediate processes outside the
communication subsystem may arrive in an order different
from the order sent. A distributed application in which one
node can originate requests that initiate actions at several
sites cannot take advantage of the FIFO ordering property
to guarantee that the actions requested occur in the correct
order. Instead, an independent mechanism at a higher level
than the communication subsystem must control the
ordering of actions [14].

5. RELIABLE DATA TRANSMISSION

The Massachusetts Institute of Technology (MIT) µ- AMPS
Project has developed application specific architecture with
the following assumptions:

a) The Base stations are far from nodes.

b) All nodes are energy constrained.

c) Data correlation as shown in the Fig.2

Fig. 2: Application Specific Architecture [3]

which emphasis on application layer to design protocols for
high quality, energy efficiency and spectrum efficiency.

Fig.3: Framework for Simulation

Algorithm

Design for m clusters per round

For each packet do

Repeat

{Sender- Side algorithm}

Receive a packet from application layer

Translate next hop node address of this packet to the
next cluster address

Send this packet with read request

{Receiver – Side algorithm

running on multiple nodes}

Receive a packet

Send this packet to the application layer to the selected
receiver only.

if packet received correctly

ACK

else

NAK

until

The packet reaches destination

End for

6. CONCLUSION

The End-to-End arguments are responsible for the
determination of overall performance of the system. In order
to determine if the end-to-end arguments are applicable to
a certain service, it is important to consider what entity is
responsible for ensuring that service. So, paper concludes
“By providing the simulation framework and an algorithm
for reliable transfer of packets between end users which can
be further modeled using Network Simulation tool”.

REFERENCES

[1] Patrice A. Lyons: “The End-End Principle and Definition
of Internet”, November 10, 2004.

[2] Qing Cao. Tarek Abdelzaher, Tian He and Robin Kravets:
“Cluster based Forwarding for Reliable End-to-End
Delivery in Wireless Sensor Networks.

[3] W. Heinzeelman, A.Chandrakasan and H.Balakrishnan “An
Application Specific Protocol Architecture for Wireless
Microsensor Networks”, MIT, IEEE Transaction on
Wireless Communication,1, No.4, October 2002.

[4] D. Clark and M. S. Blumenthal: “Rethinking the Design of
the Internet: The End to End Arguments vs. the Brave New
World”; Workshop on The Policy Implications of End-to-
End, Dec. 2000.



OVERALL PERFORMANCE IMPROVEMENT IN WIRELESS SENSOR NETWORK SYSTEM USING END-END ARGUMENTS 25

[5] D. Reed, “The End of the End-to-end Argument”, http://
www.reed.com/Papers/endofendtoend.html, 2000.

[6] J. Stone and C. Partridge “When the CRC and TCP
Checksum Disagree”, Proc. SIGCOMM, 2000.

[7] S. Liebowitz and S. Margolis, “Network Externality”,The
New Palgraves Dictionary of Economics and the Law,
MacMillan, 1998.

[8] N. Negroponte: “The Future of Phone Companies”, Wired,
4(9), Sep. 1996.

[9] D. Reed, J. Saltzer and D. Clark, “Active Networking and
End-to-end Arguments”, IEEE Net. Mag., 12(3), 69-71,
May/Jun. 1998.

[10] S. Bhattacharjee, K. Calvert and E. Zegura, “Active
Networking and the End-to-end Argument”, Proc. Int’l
Conf. on Network Protocols, 1997.

[11] L. Peterson and B. Davie, Computer Networks: A Systems
Approach. Morgan Kaufmann, 1996.

[12] B. Carpenter: “Architectural Principles of the Internet”,
IETF, RFC 1958, Jun. 1996.

[13] Tim Moors: “A Critical Review of End-to-End Arguments
in System Design”, Polytechnic University, Brooklyn,
NY 11201, USA.

[14] J. Saltzer, D. Reed and D. Clark, “End-to-End Arguments
in System Design”, ACM Trans. Comp. Sys., 2(4), 277-88,
Nov. 1984.

[15] S. Lin and D. Costello, Jr., Error Control Coding:
Fundamentals and Applications, Prentice-Hall, 1983.

www.reed.com/Papers/endofendtoend.html



